Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The Multiple Element Limitation in Northern Hardwood Ecosystems (MELNHE) project studies N and P acquisition and limitation of forest productivity through a series of nutrient manipulations in northern hardwood forests. This data set is published in support of a manuscript titled "Nitrogen and phosphorus co-limitation of forest growth in northern hardwood forests" and includes data and code used in the analysis. The primary diameter breast height dataset can be found in: Fisk, M.C., R.D. Yanai, and T.J. Fahey. 2025. Tree DBH response to nitrogen and phosphorus fertilization in the MELNHE study, Hubbard Brook Experimental Forest, Bartlett Experimental Forest, and Jeffers Brook ver 2. Environmental Data Initiative. https://doi.org/10.6073/pasta/fb8f8d5b903627bee9ad6aa4c32f2289. Additional detail on the MELNHE project, including a datatable of site descriptions and a pdf file with the project description and diagram of plot configuration can be found in this data package: https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-hbr&identifier=344. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.more » « less
-
The unpredictability of random numbers is fundamental to both digital security and applications that fairly distribute resources. However, existing random number generators have limitations-the generation processes cannot be fully traced, audited, and certified to be unpredictable. The algorithmic steps used in pseudorandom number generators are auditable, but they cannot guarantee that their outputs were a priori unpredictable given knowledge of the initial seed. Device-independent quantum random number generators can ensure that the source of randomness was unknown beforehand, but the steps used to extract the randomness are vulnerable to tampering. Here, for the first time, we demonstrate a fully traceable random number generation protocol based on device-independent techniques. Our protocol extracts randomness from unpredictable non-local quantum correlations, and uses distributed intertwined hash chains to cryptographically trace and verify the extraction process. This protocol is at the heart of a public traceable and certifiable quantum randomness beacon that we have launched. Over the first 40 days of operation, we completed the protocol 7434 out of 7454 attempts -- a success rate of 99.7%. Each time the protocol succeeded, the beacon emitted a pulse of 512 bits of traceable randomness. The bits are certified to be uniform with error times actual success probability bounded by 2^(−64). The generation of certifiable and traceable randomness represents one of the first public services that operates with an entanglement-derived advantage over comparable classical approaches.more » « lessFree, publicly-accessible full text available November 8, 2025
-
Collisional analysis combines the effects of collisional relaxation and large-scale expansion to quantify how solar wind parameters evolve as the plasma expands through the heliosphere. Though previous studies have applied collisional analysis to the temperature ratio between protons (ionized hydrogen) andα-particles (fully ionized helium), this is the first study to exploreα-proton differential flow with collisional analysis. First, the mathematical model for the collisional analysis of differential flow was derived. Then, this model was applied to individualin-situobservations from Parker Solar Probe (PSP;r= 0.1–0.27 au) to generate predictions of theα-proton differential flow in the near-Earth solar wind. A comparison of these predicted values with contemporaneous measurements from the Wind spacecraft (r= 1.0 au) shows strong agreement, which may imply that the effects of expansion and Coulomb collisions have a large role in governing the evolution of differential flow through the inner heliosphere.more » « less
-
Key ideas: Computational thinking and computer science can be taught to students in primary grades using low tech tools. Teacher leaders from rural Appalachia conducted a professional development training that supported other educators in their community. Learning computational thinking and computer science in the primary grades is important for setting a foundation that can be built upon throughout middle and high school.more » « less
-
Abstract We report observations of multiple subscale reconnecting current sheets embedded inside a large-scale heliospheric current sheet (HCS) reconnection exhaust. The discovery was made possible by the unusual skimming trajectory of Parker Solar Probe through a sunward-directed HCS exhaust, sampling structures convecting with the exhaust outflows for more than 3 hr during Encounter 14, at a radial distance of ∼17 solar radii. A large number of subscale current sheets (SCSs) were detected inside the HCS exhaust. Remarkably, five SCSs showed direct evidence for reconnection, displaying near-Alfvénic outflow jets and bifurcated current sheets. The reconnecting SCSs all had small magnetic shears (27°–81°), i.e., strong guide fields. The thickness of the subscale reconnecting current sheets ranged from ∼60 km to ∼5000 km (∼20–2000 ion inertial lengths). The SCS exhausts were directed predominantly in the normal or out-of-plane direction of the HCS, i.e., nearly orthogonal to the HCS exhaust direction. The presence of multiple low-magnetic-shear reconnecting current sheets inside a large-scale exhaust could be associated with coalescence of multiple large flux ropes inside the HCS exhaust. The orientation of some SCS exhausts was partly in the ecliptic plane of the HCS, which may indicate that the coalescence process is highly three-dimensional. Since the coalescence process is likely short-lived, the detection of five such events inside a single HCS crossing could imply the common occurrence of flux rope coalescence in large-scale HCS reconnection exhausts.more » « less
-
Abstract During its 10th orbit around the Sun, the Parker Solar Probe sampled two intervals where the local Alfvén speed exceeded the solar wind speed, lasting more than 10 hours in total. In this paper, we analyze the turbulence and wave properties during these periods. The turbulence is observed to be Alfvénic and unbalanced, dominated by outward-propagating modes. The power spectrum of the outward-propagating Elsässer z + mode steepens at high frequencies while that of the inward-propagating z − mode flattens. The observed Elsässer spectra can be explained by the nearly incompressible (NI) MHD turbulence model with both 2D and Alfvénic components. The modeling results show that the z + spectra are dominated by the NI/slab component, and the 2D component mainly affects the z − spectra at low frequencies. An MHD wave decomposition based on an isothermal closure suggests that outward-propagating Alfvén and fast magnetosonic wave modes are prevalent in the two sub-Alfvénic intervals, while the slow magnetosonic modes dominate the super-Alfvénic interval in between. The slow modes occur where the wavevector is nearly perpendicular to the local mean magnetic field, corresponding to nonpropagating pressure-balanced structures. The alternating forward and backward slow modes may also be features of magnetic reconnection in the near-Sun heliospheric current sheet.more » « less
-
Abstract The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) was launched aboard NASA’s Ionospheric Connection (ICON) Explorer satellite in October 2019 to measure winds and temperatures on the limb in the upper mesosphere and lower thermosphere (MLT). Temperatures are observed using the molecular oxygen atmospheric band near 763 nm from 90–127 km altitude in the daytime and 90–108 km in the nighttime. Here we describe the measurement approach and methodology of the temperature retrieval, including unique on-orbit operations that allow for a better understanding of the instrument response. The MIGHTI measurement approach for temperatures is distinguished by concurrent observations from two different sensors, allowing for two self-consistent temperature products. We compare the MIGHTI temperatures against existing MLT space-borne and ground-based observations. The MIGHTI temperatures are within 7 K of these observations on average from 90–95 km throughout the day and night. In the daytime on average from 99–105 km, MIGHTI temperatures are higher than coincident observations by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on NASA’s TIMED satellite by 18 K. Because the difference between the MIGHTI and SABER observations is predominantly a constant bias at a given altitude, conclusions of scientific analyses that are based on temperature variations are largely unaffected.more » « less
-
Abstract Owing to its low density and high temperature, the solar wind frequently exhibits strong departures from local thermodynamic equilibrium, which include distinct temperatures for its constituent ions. Prior studies have found that the ratio of the temperatures of the two most abundant ions—protons (ionized hydrogen) andα-particles (ionized helium)—is strongly correlated with the Coulomb collisional age. These previous studies, though, have been largely limited to using observations from single missions. In contrast, this present study utilizes contemporaneous, in situ observations from two different spacecraft at two different distances from the Sun: the Parker Solar Probe (PSP;r= 0.1–0.3 au) and Wind (r= 1.0 au). Collisional analysis, which incorporates the equations of collisional relaxation and large-scale expansion, was applied to each PSP datum to predict the state of the plasma farther from the Sun atr= 1.0 au. The distribution of these predictedα–proton relative temperatures agrees well with that of values observed by Wind. These results strongly suggest that, outside of the corona, relative ion temperatures are principally affected by Coulomb collisions and that the preferential heating ofα-particles is largely limited to the corona.more » « less
An official website of the United States government

Full Text Available